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Abstract

We combine PDDL/PDDL+ planning with goal reason-
ing to leverage the strengths of both and succeed in a
limited variant of Minecraft. Automated planners have
long been able to reason about numeric fluents and ex-
ogenous events, but remain largely confined to closed
worlds with full observability. Goal reasoning can re-
spond to dynamic, open worlds and partial observability,
but must rely on an effective planner. We demonstrate
that combining goal reasoning with automated planning
reduces the overall computational effort to achieve goals
while succeeding at multiple domain specific metrics.
We highlight important design decisions in PDDL1.2,
PDDL2.1, and PDDL+, including the use of PDDL+
events to model opportunistic goals. We close with a
discussion of trade-offs associated with choosing the
modeling features and identify a number of challenges
for the next generation of planning systems.

1 Alex’s Quest

Consider an agent, Alex, at the end of a 300-meter hallway
with entries to dozens of rooms along each side containing
randomly placed resources (e.g., wood, diamonds, iron ore,
and coal), necessary crafting equipment (e.g., a workbench
for crafting and a furnace for smelting ore), and randomly
spawned zombies which can harm Alex. Alex can only ob-
serve the world directly nearby and must reach the far end of
the hallway with a crafted diamond sword in hand. After this
hallway, Alex faces a dungeon filled with enemies, therefore
it would be best to also have a full complement of armor, a
stack of torches, some ladders, etc.

This quest is derived from Minecraft, an open-world sand-
box game where players choose their own objectives such
as building structures, collecting resources, crafting, fight-
ing enemies, or exploring. The world consists of 1 meter
voxels (i.e., cubes). Minecraft has many properties of an
ideal testbed for designing planning and acting techniques.
It includes such issues as multiple agents (both cooperative
and adversarial), partial observability, complex tasks (e.g.
crafting tools, building), to name a few. The quest, and simi-
lar Minecraft challenges, can be easily solved by automated
planning systems using replanning with two additions: oppor-
tunistic goals provided by PDDL+ events and goal reasoning.

PDDLA+ (Fox and Long 2006) is an extension of the stan-
dardized modeling language in automated planning, PDDL

(IPC Committee 1998). In conjunction with previous ver-
sions, PDDL+ introduces independent processes and exoge-
nous events. Processes have time-dependent continuous
effects, whereas events bring about instantaneous discrete
change. Both elements they are triggered by the environment
as soon as their preconditions are satisfied; the planner does
not control processes/events. Events are ideal to model the
appearance of entities and resources and enable the modeling
of opportunistic goals.

Goal reasoning allows an agent to deliberate about its own
goals during execution. This allows an agent to be more
adaptable to changes in the world by determining, for exam-
ple, when it should replan or when it should adjust its sensing.
A recent implementation of goal reasoning, called ACTOR -
S1M (Roberts et al. 2016b), has been applied to Minecraft,
but ACTORSIM lacked a connection to PDDL-based plan-
ners and some features needed to support observations.

We extend ACTORSIM to translate Minecraft into PDDL
and examine trade-offs of this combination. The contribu-
tions of this paper include: (1) an extension of ACTORSIM
to include mobs, resources, and the ability to observe them;
(2) PDDL/PDDL+ models of Minecraft; to our knowledge,
these are the first PDDL models of Minecraft that include
randomly placed resources and zombies; (3) a discussion of
how the domain modeling evolved, highlighting the strengths
and shortcomings of each approach; (4) an effective mecha-
nism for managing an open, dynamic world via opportunistic
goals implemented as PDDL+ events; and, (5) an application
of goal reasoning to reduce the cumulative search effort of
the planner whilst maintaining domain-specific metrics such
as resources collected. In the remainder of the paper, we de-
scribe the planning models we constructed, how we leverage
them during goal reasoning, our evaluation of the system,
and related work. We close with a discussion of future work.

2 Interacting with Minecraft

To interact with the Minecraft game, we use the publicly
available tool called ACTORSIM (Roberts et al. 2016b).
This connector exposes state information about the world
and discrete motion primitives for controlling character. It
also provides a way to construct challenge problems like the
introductory quest. The previous version of ACTORSIM
only supports actions to move forward, mine, or build a
bridge and only reports the blocks directly around the player.



We extended ACTORSIM considerably to support our
study. We added actions to move the character north, east,
south, or west and actions to collect resources. We extended
the sections available to include zombies, diamonds, bread,
and wood as well as observations of entities and items around
the player. Finally, we added a PlanManager to convert
this state to PDDL and run a planner. Figure 1 shows the
relationships between the core components for our study.

The PDDL planner accepts input files and produces a sin-
gle plan; not shown is the PlanManager component that as-
sists with this process by creating the PDDL files, running
the planner process, and parsing the plan output. The ‘Alex
Controller’ ensures that all actions taken are safe to execute
— that is, that the character doesn’t walk off a cliff or into
lava. It also abstracts the game state (e.g., blocks, observa-
tions, inventory) into data structures that can be read by other
components. Finally, the ‘Goal Reasoner’ sets up challenges,
monitors experiments, and manages the character’s goals.

3 Modeling Minecraft

All planning modeling languages have been designed for
particular classes of domains. With a multitude of domain
definition languages available, consideration of all features of
the scenario and its future extensions is necessary to capture
the model accurately. The choice of modeling language is
crucial as it affects the size of the search space, branching
factor, and generally how closely the domain represents the
corresponding real world problem. A domain language not
well-suited to a given problem can result in an inaccurate
representation of the essence of the real-world scenario, as
well as a convoluted and bloated domain. A more expressive
model allows a closer resemblance to the Minecraft world
but can increase search cost. We aim to arrive at a model
that is expressive enough while still solvable within a few
seconds. We modeled the Minecraft domain incrementally,
adjusting our choice of modeling languages as the desired set
of features expanded over time.

Observation and Plan Zones All the models share the con-
cept of zones. Minecraft coordinates are given in X (east-
west), Y (up-down), and Z (north-south) coordinates where
north, west, and down are negative. In this paper, we focus on
the X-Z grid of obstacles around the player and plan to add
height in future work. Even without height, the challenges
we present are 20 blocks wide by 150 blocks long. The full
obstacle course takes 90-180 seconds (or more) to plan, far
too slow for reactive execution. So we must consider how
much of the world to reason with when encoding the local
state around the player into a problem file for the planner. We
define observation and plan zones around the player given
by the distance (front,back,left,right) away from the player in
each of these directions. An observation zone is the larger of
the two, and defines the distance away from Alex that items
are observed. While this reduces the level of detail, planning
for the entire observation zone can still take tens of seconds
or longer and is too slow for a tight execution loop. So we use
a much smaller plan zone that the planner can solve quickly.

Consider Figure 2 which captures the abstract state from
the image in Figure 1. Alex (shown as Y) is about to walk into
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Figure 1: Overview of the planning and acting components.
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Figure 2: Sample problem and observation zones around
Alex (denoted Y) containing walkable cells (.), unsafe cells
(X), the intermediate target (T), glass blocks (=), diamonds

(D), wood (W), and a zombie (Z). The left plot shows the

PDDL2.1 representation, while the right plot shows the
PDDL+ version.

a zombie (Z) noted in the PDDL 2.1 model as unsafe (X) or
in the PDDL+ model as surrounded by glass (=). We cage the
zombies in glass because we lack an effective way to defend
against zombies; in future work, we discuss our plans for
using reactive strategies for defense. Walking in any corner
squares around the zombie, results in health damage, so Alex
must avoid these positions if possible. The PDDL+ model
encodes this knowledge but the PDDL2.1 model does not.
Thus, the goal reasoner marks as unsafe all blocks around a
zombie, effectively enforcing safety. The observation zone
in this small example includes the entire area. The plan
zone of (6,1,2,2) is six cells in front of Alex, one cell behind
Alex, and two cells to the left and right. Walkable cells (.)
in the plan zone are safe spots where Alex can stand. An
intermediate target (T) creates a feasible subproblem for the
planner. Just outside the plan zone are resources of wood (W)
and diamond (D). As the end of the hallway is always north
of the character, the intermediate target is the northernmost
walkable cell closest to the hallway’s end.

A propositional model Our first model employed
PDDL1.2 (IPC Committee 1998) and relied on propositional
variables to represent Alex and the surrounding area. Each
cell in the grid was defined in relation to its neighboring cells
(i.e. cell; ”is north of” cell;). Discrete change and purely
propositional set of variables served well as a proof of con-
cept and the character could achieve the end goal. Research
in propositional encodings is the most mature, and every



planner we tried succeeded at the model for small problem
sizes. The character was able to move through hallway and
overcome most obstacles, but this required replanning every
3-5 steps. The planner could sometimes stall if the planning
zone wasn’t big enough to get around an obstacle.

Though simple to construct, the model scaled poorly. This
version only included the goal of reaching a specified target
cell and extending the model to include additional tasks was
particularly difficult. The key to reducing the number of
replanning episodes and eliminating stalls was to increase
the problem size, allowing the planner to plan further each
episode. However, the problem could not scale or include
height because each cell and its n-way connections must be
explicitly stated in the problem file.

A Numeric PDDL2.1 model To increase the problem
zone, we turned to PDDL2.1 (Fox and Long 2003) which
adds numeric fluents, durative actions and continuous action
effects. Expanding the model to account for entities and
resources required major changes in the domain.

Instead of predicates between cells, we represented each
cell with a numeric function for each dimension (e.g., x_cell,
z_cell) and a type (e.g., walkable, unsafe). Each cell in the
grid only takes four statements: the declaration, the x and
y values, and the cell type (walkable, unsafe, etc.). Queries
such as “is-north-of” are easily calculated and transitive. This
formulation provided information about distances between
cells, reduced the problem size, and eased scaling.

An added benefit of moving to PDDL2.1 was the ease in
representing inventory and resource collection. Resource
location, type, and quantity could easily be specified using
numbers without adding new predicates or functions.

The PDDL 2.1 model heavily relies on the goal reasoner
to add the goal conditions forcing Alex to visit cells with re-
sources and avoid cells with zombies. Extending the domain
to consider collecting resources is complicated by the fact
that these are randomized. A simple approach is to add a goal
condition to “collect” all resources, but this makes the prob-
lem unsolvable if no resources exist in the current plan zone.
To solve this, the PDDL2.1 model uses a “visited” predicate
to force the planner to collect resources. Similarly, avoiding
zombies requires an “unsafe” annotation for cells around a
zombie. The goal reasoner and PlanManager include these
predicates for resources/zombies within the plan zone.

A Numeric PDDL2.1 model with a plan metric To facil-
itate collecting resources without relying on “visited” pred-
icates, our next model employed plan metrics that maxi-
mized wood and diamond resources in the inventory, through
collect actions. However, the metric alone does not en-
courage the planner to collect the drop, and instead the plan-
ner focuses on a direct trajectory to the target cell at the end
of the corridor. We believe this behavior results from the
bias of a planner toward the shortest plan. This approach
completely ignores the resources, a focal point of this work,
so we exclude this model from further discussion and evalua-
tion. Instead, we employ PDDL+ events with what we call
opportunistic goals.

A Numeric PDDL+ model with opportunistic goals
PDDL+ (Fox and Long 2006) extends PDDL2.1 with in-
dependent processes and exogenous events. It has mostly
been used to define hybrid systems, i.e. models exhibiting
both discrete and continuous behavior, often with non-linear
system dynamics. Indeed, some of the continuous behavior in
Minecraft can only be represented by independent processes
(e.g., health regeneration cannot be directly manipulated by
Alex because Alex needs to eat, which in turn activates a
continuous process increasing his health level at a steady
rate.) On the other hand, events are best suited to model
some of the innate features of Minecraft, such as resources
or hostile entities entering Alex’s field of view. In addition,
PDDL+ events can also be compiled to act as opportunis-
tic goals/plan preferences which allow us to maximize the
collected resources, as described in Section 4.

Opportunistic goals enabled by PDDL+ events are trig-
gered when such resources are observed and need to be col-
lected. Unlike soft goals, which can be ignored by the planner,
opportunistic goals must be satisfied when encountered (e.g.
collect resources when seen along Alex’s path or avoid zom-
bies). Moreover, opportunistic goals are only ever considered
when required (e.g. if Alex has not collected a sufficient
amount of a given resource), otherwise they are ignored to
avoid unnecessary computational effort.

For each type of resource, a propositional fact is
added to the goal condition and falsified by events.
For example, to trigger wood collection we falsify
(wood_resource_collected):

(:event wood_resource_appears

:parameters (?start_cell - cell ?resource - cell)

:precondition (and (alex_at ?start_cell)
(wood_resource_collected)
(< (wood_in_inventory) (wood_goal))
(< (= (z_coord ?resource) (z_coord ?start_cell)) 5)
(= (resource_type ?resource) 3))

ceffect (and (not (wood_resource_collected))))

This event triggers when wood is close to Alex.

There are cells that Alex should avoid at all costs. Zombies
are hostile entities which attack Alex when nearby. Each
strike from a zombie decreases Alex’s health. To trigger
zombie avoidance we falsify (alive):

(:event zombie_damage
:parameters ( ?start - cell ?zombie_cell - cell )
:precondition (and (alive) (alex_at ?start)

(= (entity_type ?zombie_cell) 100)

(>= (= (z_cell ?zombie_cell) (z_cell ?start)) -1)
(<= (z_cell ?zombie_cell) (z_cell ?start))

(<= (- (x_cell ?start) (x_cell ?zombie_cell)) 1)

(<= (= (x_cell ?zombie_cell) (x_cell ?start)) 1) )

:effect (and (not (alive)) ))

This event triggers when a zombie appears in the plan zone
and when Alex is in striking distance from the zombie.
These goal conditions are satisfied in the initial state (i.e.
set to true by default) and falsified by the event, forcing Alex
to collect the resource or avoid the zombie before continuing
to the target cell. In the absence of resources or zombies, the
resource-related goal conditions remain satisfied throughout.
Overall, the PDDL+ domain allows finding plans which
prioritize immediate acting in the local space, while assuming



the subsequent sections of the search space are restricted to
movement only. As mentioned before, the triggered events
also drive the replanning strategy, specifying when to replan,
to efficiently catch changes in the local plan zone without
redundant effort. However, problems with large numbers of
resources and zombies, even in a restricted subproblem, can
quickly become intractable. So we turn to goal reasoning.

4 Goal Reasoning

Goal reasoning enables an actor to deliberate online about
its goals. Roberts et al. (Roberts et al. 2016b) formalize
goal reasoning as progression of goals according to a goal
lifecycle. A goal is formulated and selected before planning;
these two stages can filter an open world by only formulating
or selecting relevant goals. Let a plan 7 = {(a;..a,) be a
sequence of actions a;..a,,. A goal is then expanded into one
or more plans II and a single plan 7 € II is committed for
execution; goal reasoning naturally extends to approaches
that find more than a single plan. When 7 is sent for execu-
tion the goal is dispatched; the simplest system sequentially
executes each action a; € m. A goal impacted during execu-
tion is evaluated for the best course of action and resolved
appropriately. Example resolve strategies include repairing
m, replanning to create a new m, regoalling, etc. We focus on
replanning in this work.

Goal Reasoning Example Our study focuses on three goals
from the introductory paragraph: get to the end of the hall-
way (rooms excluded for the moment), avoid zombies, and
collect resources. These goals are formulated in a combined
‘Complete Hallway’ goal that is selected once the hallway
is constructed. The PlanManager expands a plan for this
goal by converting the goal to PDDL and calling an auto-
mated planner; the zombie and collect goals are translated to
the correct PDDL model, as described earlier. The planner
automatically commits to the first plan it finds.

The ‘Complete Hallway’ goal is dispatched by preparing
the full plan for execution. But because the Controller only
executes one command at a time, the goal reasoner creates
subgoals of ‘Complete Hallway’ so each action of the plan
can be tracked independently. For example, a move-north ac-
tion is converted to a subgoal to be at the location north of the
player. The goal reasoning system automatically selects the
subgoal, skips planning since it is not needed, and dispatches
the single action to the controller. The controller completes
the action and reports back to the subgoal. When the subgoal
completes, ‘Complete Hallway’ is notified and can check to
see if any of its goals are impacted. Changes during exe-
cution may result in the need to replan. Further, Alex will
clearly need to replan when all actions of the current plan are
completed. Alex might also replan when zombies, wood, or
diamonds appear. In all cases, the goal reasoner determines
when replanning is needed.

Goal Reasoning with Planning So far, we have explained
how opportunistic goals in PDDL+ allow a planner to syn-
thesize a plan under partial observability and how a goal
reasoning system adjusts goals based on Alex’s context. Con-
sider again Figure 2. The resulting plan for either plot moves
Alex north two blocks to collect the diamond, east and north

around the zombie, and west toward the intermediate target.
But there is a problem with the resources in row z-9 that lie
outside the plan zone: the planner is blind to them because
they are not reported in the PDDL model. It could replan at
every step but this may waste computational effort or need-
lessly slow down Alex. There are several more reasonable
choices for the goal reasoner that we explore: (1) It could
use a Small plan zone to identify opportunities close to Alex
and force replanning at fixed intervals. (2) It could use a
Large plan zone, which could result in increased planning
cost when there are no opportunities available. (3) It could
use a Dynamic plan zone by starting with a Small plan zone
when there are no nearby opportunities but increase the zone
size when opportunities surface in the observation window.
We next explore the tradeoffs of these three choices.

5 Evaluation

In this section, we assess three research hypotheses con-
cerning the use of an expressive planning model and a goal
reasoning system: (1) The use of a Dynamic planning zone
by the goal reasoner will significantly reduce planning effort
when compared with always using a large planning zone;
(2) the use of PDDL+ to collect resources via events will
significantly reduce planning effort over the numeric PDDL
model for any zone size; and (3) the use of the Dynamic
plan zone or PDDL+ will not significantly reduce resource
collection.

Similar to previous ACTORSIM experiments for
Minecraft, we randomly generate hallways consisting of 10
sections. Each section is 20 blocks wide and 15 blocks long,
and contains one randomly placed element: a wood drop, a
diamond drop, or a caged zombie.

The goal reasoning system selects for the planner a plan-
ning zone, defined as the number of cells away from the
player in each of the following directions: (front, back, left,
right). The Small plan zone of (5,1,3,3) has the benefit of
a fast planning time at the expense of frequent replanning
and possibly missing opportunities to collect resources. The
Large plan zone of (8,3,8,8) reduces the number of replanning
episodes at the cost of increasing the overall computational
effort and planning time; however, it is less likely to miss
opportunities. The Dynamic plan zone defaults to the Small
zone until a resource is within 8 blocks, at which point it en-
larges the plan zone in the direction needed to reach that drop.
In effect, the goal reasoner is varying the replanning strategy
as imposed by the plan zone. We leave more sophisticated
zone-selection strategies for future work.

For this study, we limit the models and planning systems
to focus on our research questions. For planning models,
we focus on the numeric PDDL2.1 model that uses “visited”
and “unsafe” predicates as well as the PDDL+ model that
uses opportunistic goals. For a planner, we used the POPF
planner extended for reasoning with PDDL+ processes and
events (Coles and Coles 2014). This choice was motivated by
the capabilities of the planner which considers all features of
our models. Using the same planner for all models guarantees
fair comparison between the different variants.

Table 1 summarizes 180 runs: 30 runs for each of the
six zone/model combinations. The S(N), L(N), and D(N)



rows show the numeric PDDL2.1 runs, whereas rows de-
noted S(+), L(+), and D(+) summarize the PDDL+ runs
for Small, Large, and Dynamic planning areas, respectively.
The columns summarize the mean and standard deviation
for each of the response variables: cumulative CPU time,
number of nodes evaluated, and memory as well as the ra-
tio of items collected versus those available in the hallway.
A two-factor, paired-sample ANOVA for zone and course
across each metric reveals that zone size significantly effects
the results of each metric (p ~ 0 for all five metrics), justi-
fying pairwise comparisons between the zone results. We
now make a number of pairwise comparisons to examine how
strongly the evidence supports our three research hypothe-
ses. We report p-values for the Tukey Honest Significant
Difference test (o = 0.05) but we verified these results using
Scheffe’s method, which is more robust to potential effects
of heteroscedasticity.

A dynamic planning zone reduces planning effort. The
evidence suggests that the Dynamic plan zone can signifi-
cantly reduce planning time while not using more memory.
It is evident that in either the numeric or PDDL+ models
there is 70-90 second difference in the CPU time between the
Small and Large planning zones. As expected, the Dynamic
plan zone is significantly different from the Large planning
zone (p < 0.0001) and significantly similar to the Small plan-
ning zone (p ~ 0.84 for the numeric PDDL and p ~ 0.99
for PDDL+). In terms of nodes evaluated and memory, the
Dynamic uses more nodes but less (or similar) memory than
Small zone. However, the Dynamic zone never uses signifi-
cantly more nodes or memory than the Large zone.

A PDDL+ model is less computationally intensive than
a numeric PDDL2.1 model. The evidence is mixed. A
PDDL+ model uses a statistically similar number of nodes as
a PDDL2.1 model. It uses significantly more CPU time for
the large zone but is similar for the other two zones. Finally,
it uses significantly less memory for the Small zones and
similar time for the Large and Dynamic zones. This is seen
by comparing the Time, Nodes, or Memory usage for S(N)
with S(+), L(N) with L(+), or D(N) with D(+).

The dynamic plan zone (as selected by goal reasoning) or
PDDL+ do not reduce resource collection The evidence
suggests that neither goal reasoning nor PDDL+ significantly
reduces Alex’s ability to collect resources. This question is
answered by examining the ratios of wood and diamonds
collected. At first glance, it may appear that these ratios are
very different because the means vary so much. Examining
the pairwise comparisons reveals a significant difference for
the Small zone. Because there exists no significant difference
between collection results for most of the zone/model combi-
nations, it is clear that adding goal reasoning or PDDL+ to
the system allowed it to maintain resource collection at the
Large zone level.

Discussion The results show that goal reasoning can signif-
icantly reduce the planning time by a factor of 15-20. The
results did not show that PDDL+ provided a further reduction
in planning effort, but rather both models exhibited similar
performance. Further, neither approach fared worse at re-
source collection than the Large zone, which was a baseline

Time Nodes Memory Wood Diamond
T s z s T s T E} T s
S(N) 2.0 0.1 304 50 134 2 | 047 047 | 027 032

S(+) 34 05 312 44 110 9 | 0.250.28 | 0.28 0.29
L(N) | 742123 12439 21870 120 40 | 0.96 1.01 0.94 0.87
L+) | 934 13.0 7508 16175 104 31 | 0.650.33 | 0.64 0.38
D(N) 43 22 1804 3339 124 5 | 0.66 0.64 | 0.75 0.78
D(+) 35 038 446 204 124 9 | 0.68 0.77 | 0.64 0.74

Table 1: Summary of statistics for the hallway study.

upper bound. However, the PDDL+ provides a much eas-
ier and more encompassing model for resource collection,
which reduces the computational effort exerted by the goal
reasoning system.

6 Related Work

Perhaps the closest planning work related to our use of oppor-
tunistic/soft goals in an open world is the Open World Quan-
tified Goals of Talamadupala et al. (2010), where quantified
goals allow the planner to expand on goals that may appear
during execution. An earlier work by Etzioni et al. (1997)
used Local Closed-World statements to integrate an open
world with a closed-world planner. In contrast to employ-
ing quantification or locality, a PDDL+ opportunistic goal is
always in the problem’s goal conjunction and a conditional
event enables the goal.

A variety of research systems have been built to study
Minecraft. The first, called BurlapCraft, by Abel et al. (2015)
integrated the BURLAP machine learning platform' and ex-
amined how to use knowledge to select actions. More re-
cently, Microsoft has released an open-source platform called
Malmo? that provides extensive support for multiple pro-
gramming languages, the ability to set up experiments, as
well as support for reinforcement learning. ACTORSIM is
primarily distinguished from these other systems in its use
of goal reasoning, existing experiments using deep learning
(Roberts et al. 2016c¢), and integration with other simulators
including robotics platforms. Each system has merits depend-
ing on the task at hand, but none of these systems supported
observations when we first examined them.

Recently, Al research in game-playing concentrated on
exploiting Deep Learning techniques, particularly deep Q-
networks (DQN) which beat expert human players on a
range of ATARI games (Mnih et al. 2015). ATARI games
have also been tacked using classical planning (Lipovetzky,
Ramirez, and Geffner 2015). More advanced games such
as Starcraft and Minecraft require a non-trivial transition
to a much more complex environment. Recent work (e.g.,
(Bonanno et al. 2016; Tessler et al. 2016; Abel et al. 2015;
Usunier et al. 2016)) shows promise in this area, though
these studies examine simplified models or restricted sub-
tasks. Massive training data sets, sparse rewards, vast state-
action spaces, and difficult-to-define evaluation functions sig-
nificantly limit the scaling potential and efficiency of DQNs.

1http: //burlap.cs.brown.edu/
2https ://github.com/Microsoft/malmo



In fact, Starcraft and Minecraft games are both prime exam-
ples of domains from automated planning (e.g. the Settlers
domain (Long and Fox 2003)) where long-term, high-level
goals need to be achieved.

Prior work has explored the use of PDDL to represent
Minecraft (Branavan et al. 2012). This paper presents the first
PDDL+ domains of Minecraft. Similar domains were previ-
ously defined in either purely propositional PDDL (IPC Com-
mittee 1998) or non-temporal PDDL2.1 with numeric fluents
(Fox and Long 2003). PDDL+ is designed to compactly repre-
sent hybrid systems with mixed discrete/continuous behavior
through processes and events. In recent years, PDDL+ plan-
ning has become a rising trend in Al and multiple approaches
have been proposed to deal with PDDL+ domains (Shin and
Davis 2005; Cashmore et al. 2016; Coles and Coles 2014;
Della Penna et al. 2009; Piotrowski et al. 2016).

In the past PDDL+ was combined with Hierarchical Task
Networks (HTNs) for goal-driven autonomy, implemented in
the SHOP2pppy + planner (Klenk et al. 2013; Molineaux et
al. 2010). In contrast to hierarchical approaches, our work
focuses on the first PDDL representation. We plan to incor-
porate more recent developments in hierarchical planning
(e.g., (Ghallab, Nau, and Traverso 2016; Alford et al. 2016;
Dvorak et al. 2014; Shivashankar et al. 2012)).

Soft goals are hard to express in PDDL. PDDL2.1 (Fox
and Long 2003) introduced the notion of plan metrics en-
abling specification of soft goals and enhancing the quality
of solutions. They could be useful in the context of assessing
alternative plans. However, few planners actually employ
plan metrics and they are limited to one specified optimizable
function. For example, suppose each action modified the re-
sources used or acquired, the character’s change in health or
food, and the number of steps to completion. Then, a planner
could focus on producing diverse plans that span the trade
offs. But plan metrics can only minimize or maximize the
quality function which can exert unnecessary computational
effort by collecting resources well beyond Alex’s needs (and
overloading Alex’s inventory in the process).

On the other hand, PDDL3.0 (Gerevini and Long 2005)
also incorporated plan metrics and combined it with the con-
cept of planning with preferences which enable better rea-
soning with multiple objects and a more accurate method
for specifying the desired plan characteristics. Planning with
preferences is largely based on Linear Temporal Logic (LTL)
(Pnueli 1977). PDDL3.0 provides a strong feature base for
representing the Minecraft scenario. Numerical variables,
plan metrics, and preferences are well-suited to build a con-
cise and expressive Minecraft planning domain including
maximizing collected resources when available. However,
defining preferences in this manner can inflate the size of the
domain and state variables sets, and significantly increase
planning time.

These advanced features — plan metrics from PDDL2.1
and preferences from PDDL3.0 — could provide interesting
and successful variants extending the modeling in this paper.
The numeric PDDL model in this paper provides a solid
foundation for assessing these features in Minecraft.

7 Closing Remarks

We have presented the first formulation of the Minecraft
domain in PDDL+ extended with resource collection and
zombie avoidance tasks. We also showed how events, a
native feature of PDDL+, can be used to model opportunistic
goals. Finally, we presented a goal reasoning approach to
reducing the computational effort for finding a viable plan by
selecting the zone size and partitioning the original problem
into planning and observation zones. To the best of our
knowledge this is the most extended model of Minecraft in
Al, though it is only a preliminary stage of a larger project.

Future work will focus on modeling and solving the mo-
tivating example. It will include a revision of the plan zone
and visibility, not only adjusting the size of the zone but also
the shape which prunes areas of no interest while including
areas with desirable resources and entities. We will also aim
to expand the PDDL+ model to account for the continuous
behavior in Minecraft, such as health management. Health
decreases when attacked by hostile mobs, but regenerates
slowly when resting. We will expand the list of happenings,
actions, and goals to reason with and manage the agent’s
health. PDDL+ events are a natural fit for this modeling.

Our approach grew from a desire to accurately model
health, food, resources, and entities in Minecraft, for which
PDDL+ events and processes are best suited. It also provides
a foundation for incorporating mixed discrete/continuous
dynamics should this be desired in future domains. External
happenings often modify the state of the environment without
interference from the agent; we believe there is a great deal
to learn from extending the model in this way.

A long-term focus of future work will enable the goal rea-
soning for long-duration autonomy. While it may be possible
to manage short-term goals such as those in the motivat-
ing quest, we are interested in leveraging goal reasoning
and automated planning for an agent that perpetually learns
(Roberts et al. 2016a). Such an agent will need to manage its
own learning agenda to master new tasks, revise previously
learned tasks, and halt learning for already mastered tasks.

A final area of future work is in extending the model
to incorporate Deep Learning. Minecraft was previously
attempted using Deep Reinforcement Learning. We plan
to compare the two approaches to identify their relative
strengths. Deep Learning could manage short-term reac-
tive behavior (i.e. self-defense) while planning with goal
reasoning could manage long-term deliberative behavior.

Authors are sometimes circumspect about the actual devel-
opment, design choices, and computational requirements of
using a particular "brand’ of planning. In contrast, we have
set out in this work to identify exactly our representational
and design choices to the greatest extent possible. While
it is unreasonable to expect a laymen to understand the nu-
ances of automated planning, PDDL, or of effective domain
modeling, we can at the least point to the active goal of the
goal reasoning system, examine the domain or problem files
produced, and examine the search trace of the planner to ex-
plain its decision. The transparency of the approach we have
outlined is especially noteworthy in an era where Al systems
are being called to arrive at sensible and correct output while
also making transparent their decision-making process.



Minecraft presents worthwhile challenges for studying
planning with respect to a simulated environment. As we
moved from a propositional representation to a more detailed
PDDL+ representation, the planners available to us dimin-
ished considerably — from close to a hundred to less than
a few. Were we to move in the direction of PDDL3.0 fea-
tures, a similar problem would occur. Similarly, few planners
support advanced PDDL2.1 features such as metrics beyond
action cost. Our findings underscore the need for the con-
tinued advance of planning systems — perhaps through the
competitions — to better support the range of PDDL features
used by applications.
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